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Abstract: Protein engineering has emerged as a transformative field in industrial biotech-
nology, enabling the optimization of enzymes to meet stringent industrial demands for
stability, specificity, and efficiency. This review explores the principles and methodologies
of protein engineering, emphasizing rational design, directed evolution, semi-rational ap-
proaches, and the recent integration of machine learning. These strategies have significantly
enhanced enzyme performance, even rendering engineered PETase industrially relevant.
Insights from engineered PETases underscore the potential of protein engineering to tackle
environmental challenges, such as advancing sustainable plastic recycling, paving the way
for innovative solutions in industrial biocatalysis. Future directions point to interdisci-
plinary collaborations and the integration of emerging machine learning technologies to
revolutionize enzyme design.

Keywords: protein engineering; biocatalysis; rational design; directed evolution; semi-rational
design; machine learning; plastic-degrading enzymes

1. Introduction
For billions of years, enzymes have served as Nature’s catalysts, driving countless

biochemical reactions essential for life. Archeological findings indicate that humans have
exploited enzymatic processes for daily applications such as bread fermentation and beer
brewing since prehistorical times [1,2].

Today, these biological catalysts are being harnessed and engineered to solve some of
the most pressing challenges in industrial biotechnology. For industrial use, enzymes must
not only be cost-effective but also exhibit high performance, high specificity or promiscuity,
and stability under the specific conditions required for their application. These stringent
requirements often expose the limitations of wild-type (WT) enzymes that frequently fail to
meet industrial demands due to low catalytic rates [3], poor thermal [4] or pH stability [5],
inadequate organic solvent tolerance [6], restricted substrate range [7], susceptibility to
inhibition by their substrates or products [8–10], and incompatible optimal reaction pH [11].
Subsequently, advancements in biocatalytic performance across a wide range of operational
conditions are crucial in meeting the demands of large-scale industrial applications.

To overcome these challenges, protein engineering seeks to ameliorate these issues
by introducing novel enzymatic activities, enhancing catalytic efficiencies, broadening or
changing substrate specificities, and optimizing enzymatic stability under harsh operational
conditions, such as high temperatures or diverse pH environments [8]. Protein engineering
strategies are predominantly divided into three main categories: (i) rational design, which
relies on detailed structural and mechanistic knowledge of enzymes to either introduce
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targeted modifications or to design entirely novel catalysts; (ii) directed evolution, which
mimics natural selection by iteratively mutating and screening enzymes for improved
properties; and (iii) semi-rational design, which prioritizes the design of smart libraries
through evolutionary insights from homologous proteins. In addition, (iv) machine learning
(ML) and deep learning (DL) methods have recently emerged as promising alternative
strategies, leveraging vast amounts of genomic, structural, and functional data to predict
mutations that enhance enzymatic properties [12,13].

The transformative potential of protein engineering is highlighted by the example of
engineered industrial polyethylene terephthalate (PET) hydrolases (PETases). PET accounts
for around 5% of total global plastic production [14] and is the most recycled plastic
worldwide [15], although traditional thermomechanical recycling methods downgrade
PET and produce inferior recycled products [16]. The discovery of novel plastic-degrading
enzymes has significantly advanced enzymatic recycling technologies, offering advantages
such as selective recycling from plastic mixtures and producing final products with virgin
PET quality [3,17]. Despite this progress, naturally occurring PETases exhibit limitations
in their efficiency and stability, restricting their use in industrial settings; therefore, recent
advances in enzymatic recycling of PET have been driven not only by the discovery of new
PETases but also by significant protein engineering efforts. These advancements culminated
in engineered enzymes, such as the leaf and branch compost cutinase (LCC) variant
LCCICCG, which is the first PETase to be industrialized for PET bio-recycling [3,4,18], an
example that highlights the capability of protein engineering to improve enzyme efficiency
and also expand industrial enzymatic applications beyond what Nature alone provides.

This review aims to provide a guide for exploring protein engineering concepts and
commonly employed strategies. It explores the structure-function interplay behind enzymatic
activity, substrate specificity, and stability, along with the latest and most relevant approaches
employed to optimize or create industrially relevant biocatalysts, categorized into rational
design, directed evolution, semi-rational design, and ML approaches. Highlighting recent
advancements and proposing future research directions, this review seeks to contribute to
the development of innovative, efficient, and industrially relevant enzymes and protein
engineering solutions while inspiring and equipping future scientists with the knowledge and
tools needed to innovate in this emerging field during its transformative prime.

2. Fundamental Principles for Engineering Protein Activity, Specificity,
and Stability

Enzymes function as biological catalysts, exhibiting remarkable specificity and cat-
alytic efficiency [19], expediting chemical reactions by lowering the activation energy barrier
required for the conversion of reactants into products, primarily through the stabilization
of the reaction’s transition state(s) [20]. A comprehensive understanding of the primary
principles governing enzyme activity, specificity, and stability is essential for functional
enzyme engineering. Key factors influencing enzymatic performance include the reac-
tion conditions, predominantly temperature and pH, their affinity to the substrate, the
employed catalytic mechanism, and the thermodynamic stability of the enzyme under
reaction conditions. An industrially relevant enzyme may need to exhibit high activity that
ensures efficient, rapid, and economical catalysis, high substrate specificity or promiscuity,
depending on the application, and high stability, which allows for higher temperatures,
thus enhancing reaction rates, reactant solubility, and reducing microbial contamination
risks [21]. This section discusses critical physicochemical parameters underlying enzy-
matic performance.
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2.1. Dependence on Temperature

Temperature is one of the most critical factors affecting enzyme activity, stability, and
overall performance. As biological catalysts, enzymes exhibit a delicate balance between
enhanced activity at higher temperatures and the risk of denaturation. Understanding how
temperature influences enzymatic function is essential for designing robust enzymes that
balance optimum activity and thermal stability under industrial conditions.

2.1.1. Optimum Temperature (Topt)

At low temperatures, enzymatic reactions proceed slowly due to reduced molecular
motion and limited substrate-enzyme collisions. Increasing the temperature accelerates
molecular movement, facilitating faster reactions up to the enzyme’s optimal temperature,
Topt, where the rate of reaction reaches its peak [22,23]. The traditional approach describes
this temperature dependence as a factor that accelerates reaction rates until the enzyme
denatures, according to the Arrhenius equation (Equation (1)):

kcat(T) = Acate−
Ea
RT (1)

where kcat is the rate constant, the units of which depend on the reaction order, Acat is the
pre-exponential factor, Ea is the activation energy, R is the universal gas constant, and T is
the temperature in K.

As the temperature increases, enzyme activity rises exponentially until irreversible
thermal denaturation dominates, converting the active enzyme (Eact) into an irreversibly
inactivated form (X) (Equation (2)):

Eact
kinact→ Einact (2)

The reaction rate constant for this inactivation, kinact, also follows the Arrhenius
equation (Equation (1)), with Ainact being the pre-exponential factor and Einact being the
activation energy for denaturation. In this case, as this is a first-order reaction, the half-life
of the enzyme can also be calculated as such (Equation (3)):

t1/2 =
ln2

kinact
(3)

However, many experimental observations have shown that the relationship between
temperature, catalytic rates, and enzyme stability is more nuanced than a simple gain in
rate that is offset by irreversible thermal denaturation [24,25].

In the early 20th century, the formulation of Transition State Theory by Eyring, Polanyi,
and others culminated in the derivation of the Eyring equation (Equation (4)) for rate
constants. For a first-order rate constant, the equation can be expressed as:

kcat(T) = κ
kBT

h
e
−∆G‡

RT (4)

where ∆G‡ represents the Gibbs free energy difference between the reactants and the
transition state, kB and h are the Boltzmann’s and Planck’s constants, respectively, and κ

is the transmission coefficient, which accounts for the probability of successful passage
through the transition state, often assumed to be 1, reflecting a system where every trajectory
crossing the transition state proceeds to product formation [26,27].

The “Equilibrium Model” introduced the idea that even before irreversible denatura-
tion at higher temperatures, enzymes can adopt a reversible equilibrium between a fully
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active form, Eact, and an inactive form, Einact, that can undergo thermal inactivation to the
denatured state, X [28,29]:

Eact ⇄ Einact → X (5)

By accounting for a reversible conformational change, the equilibrium model provided
markedly improved the fit to enzymatic activity data across a range of temperatures
compared to older approaches, thereby reaffirming the validity of an optimal temperature
that is not merely a point before catastrophic thermal denaturation but, rather, a meaningful
characteristic intrinsic to the enzyme’s dynamic structural landscape [30].

More recently, Macromolecular Rate Theory (MMRT) described the temperature de-
pendence of enzyme-catalyzed reactions independent of stability or regulatory processes,
purely based on thermodynamics and the role of changing heat capacity (∆C‡

p) between the
enzyme-substrate complex (ES) and the enzyme-transition state complex (ETS‡), where the
heat capacity (Cp) for ES is generally larger. This negative ∆C‡

p reflects a reduction in low-
frequency vibrational modes in the transition state. Based on experimental observations,
∆C‡

p is assumed to be constant, independent of temperature and κ = 1, for simplicity [26].
Thus, given Equation (4), if [31–33]:

∆G‡(T) = ∆H‡(T)− T∆S‡(T) (6)

∆H(T) = ∆H(To) +
∫ T

To
∆CpdT′ (7)

S(T) = ∆S(To) +
∫ T

To

∆Cp

T′ dT′ (8)

then the reaction rate constant, kcat, is given by (Equation (9)):

kcat(T) =
kBT

h
e
−∆H‡(To)−∆C‡

p(T−To)
RT +

∆S‡(To)+∆C‡
p(ln (T)−ln (To))

R (9)

Due to the increasing dominance of the entropic contribution (∆S‡(T)/R) over the
enthalpic term (−∆H‡(T)/RT), the reaction rate declines above the optimum temperature
(Topt), even in the absence of enzyme denaturation. In thermophilic enzymes, as Topt ap-
proaches 100 ◦C, ∆C‡

p diminishes to 0, causing the temperature dependence to approximate
Arrhenius behavior as the enthalpic and entropic terms become less temperature-sensitive.
Conversely, for mesophilic and psychrophilic enzymes that maintain relatively high un-
folding temperatures, a negative ∆C‡

p leads to a curved temperature dependence in their
catalytic rates [26].

By incorporating a simple correction term accounting for enzymatic denaturation
(kinact), MMRT can accurately deconvolute the intrinsic thermodynamic effects arising from
∆C‡

p on the reaction rate constant (kcat) from those due to unfolding, thereby providing a
comprehensive theoretical framework for understanding the temperature dependence of
enzymatic reactions [26].

2.1.2. Melting Temperature (Tm)

Enzyme inactivation theory proposes an initial equilibrium phase where the Eact

undergoes unfolding to the reversibly denatured and inactive state Einact, which retains
the potential for either refolding to its native conformation or progressing to irreversible
inactivation state X (Equation (5)) [29].

Melting Temperature (Tm) is the temperature at which 50% of the enzyme population
transitions from its active to its inactivated, but still reversibly denatured, state [34]. Close to
or above the Tm, reversibility of inactivation rapidly decreases [29]. Tm is typically measured
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with differential scanning calorimetry [35], optical methods such as circular dichroism [36],
dynamic light scattering [37], nano-differential scanning fluorimetry (nanoDSF) based on
either intrinsic fluorescence or utilizing dyes, such as SYPRO Orange [38], or directly from
enzymatic activity assays at different temperatures [29]. Typically, Tm falls between 5 ◦C
and 15 ◦C above the Topt [39]. Tm serves as a crucial benchmark for assessing an enzyme’s
thermal resilience, as enzymes with higher Tm values are generally more stable under
elevated temperatures, making them more suitable for industrial processes that operate
under harsh conditions [40].

2.2. Dependence on pH

Similarly to temperature, pH also influences enzymatic activity and stability by affecting
the ionization states of titrating residues. As pH affects the overall protein conformation, the
enzyme–substrate interactions and the catalytic residues, enzymes exhibit specific pH optima
and working ranges that must be carefully considered to maintain optimal performance.

2.2.1. Optimum pH (pHopt)

The activity of enzymes is intrinsically linked to the pH of their environment, as the
protonation states of catalytic residues and substrates are critical for enzymatic function.
The intrinsic pKa values of ionizable groups such as carboxyls, amines, hydroxyls, thiols,
and imidazoles determine their protonation state, as shown in Figure 1 [41].
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Figure 1. pH effects on amino acids: (a) structures and values of amino acid side chains involved in
ionization (pKa values may vary by ± 0.5) [41,42]; (b) schematic representation of a titration curve
showing the relationship between pH and the fraction of ionizable species that are protonated [43].
When pH = pKa, half of the species will be protonated.

However, these intrinsic values can be significantly perturbed in the active site of
enzymes, markedly affecting catalysis, as titratable amino acids adopt a functional or
apparent pKa within the protein environment. This transformation arises from electrostatic
interactions with charged or partially charged proximal groups, which generate a localized



Catalysts 2025, 15, 147 6 of 36

microenvironment that modulates their behavior. The polarity and dielectrocharacteris-
tics of the surrounding environment also critically influence the magnitude of this pKa

perturbation by impacting the stability of the associated charged states. All these factors
combined fine-tune the pKas of the titratable amino acids of a protein [41].

For example, in the serine protease mechanism, peptide bond hydrolysis is catalyzed
by a catalytic triad composed of serine, histidine, and aspartate, as well as an oxyanion
hole that stabilizes the intermediate complex (Figure 2). Initially, the substrate’s scissile
peptide bond is oriented so that its carbonyl carbon is positioned adjacent to the nucle-
ophilic serine residue. When the reaction begins, the histidine ring nitrogen, which has a
pKa near 7.5 in the free enzyme [44], acts as a general-base, converting the serine into a
strongly nucleophilic alkoxide-like species by deprotonating its hydroxyl, thus increasing
its nucleophilicity and enabling it to attack the peptide carbonyl (nucleophilic attack). This
generates a tetrahedral intermediate, stabilized in the oxyanion hole, and the histidine’s
pKa is shifted significantly upward to between 10 and 12. Indicative pKas are revealed
by nuclear magnetic resonance studies of chymotrypsin complexes with peptidyl trifluo-
roketones, analogs of the tetrahedral intermediate [44]. Subsequently, the histidine acts
as a general acid, being the proton donor, thus facilitating the departure of the cleaved
amine segment and shifting its pKa back to near 7.5. Water then enters the active site,
once again activated by histidine’s elevated basicity, and performs a nucleophilic attack
on the carbonyl carbon of the acyl-enzyme intermediate, generating another tetrahedral
intermediate, which subsequently collapses by donating the hydrogen from the protonated
histidine back to the serine, releasing the cleaved peptide C-terminus and regenerating the
free enzyme [41].
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Figure 2. Schematic representation of the α/β hydrolase catalytic mechanism probed on a serine
protease. Histidine deprotonates the serine hydroxyl, enhancing its nucleophilicity. During catalysis,
the histidine undergoes significant pKα shifts—ranging from near neutral (~7.5) in its general-base
form to as high as 10–12 in its protonated, general-acid form—enabling it to toggle between these
roles. UniProt accession number: P00767 [44].

Throughout these steps, the substantial shifts in histidine’s pKa are critical for mod-
ulating its dual role as acid and base catalyst (Figure 2). The enzyme’s optimal activity
within a pH range of 8 to 9 [45–47] can be attributed to the ionization states of the histidine
residue, which, at this pH, is mostly deprotonated, facilitating its role as a general base in
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deprotonating the serine and, thereafter, as a general acid that protonates the departing
amine [47].

Over the years, many tools have been created to predict protein pKa values based on
their structures using empirical rules from experiments [48], the Poisson–Boltzmann (PB)
equation [49,50], Density Functional Theory (DFT) [51], and ML [52,53], among others [54–56].
Based on these methods, the discrete constant pH framework combines molecular dynamics
(MD) with Monte Carlo simulations, allowing a more accurate approximation of the pKas.
In this approach, an MD simulation, which provides enzyme conformational sampling, is
occasionally paused to allow resampling of the residues’ protonation states [57]. By engineering
the pKas of the catalytic amino acids, it is possible to change an enzyme’s pHopt [58,59].

2.2.2. pH Stability

Under extreme pH conditions, the primary mechanism driving protein unfolding is
the electrostatic repulsion between like-charged groups within the protein structure, which
may subsequently lead to aggregation or irreversible denaturation that is distinctly different
from that of thermal denaturation [60]. From an engineering perspective, by modeling
these unfolding events with MD simulations or experimental techniques and identifying
strategies to mitigate destabilizing interactions, it is possible to rationally engineer pH-
dependent stability. Such observation was seen in the stabilization of the 37-residue α/β
protein CHABII by a rational single-point mutation (H21F), in which the protonation of the
histidine at low pH induced unfolding occurred by destabilizing the hydrophobic core [61].
In this context, however, directed evolution often provides a more practical approach,
bypassing the need for exhaustive computational predictions. This is exemplified by the
engineered xylanase XynHBN188A, where two amino acid substitutions led to increased
specific activity and pH stability [62].

2.3. Structure-Function Relationships
2.3.1. Substrate Affinity and Specificity

Substrate-enzyme complementarity, akin to an “induced-fit” [63,64], or the more recent
but not mutually exclusive “conformational-selection” model [65] determines binding
efficiency and substrate specificity. The binding energy of the enzyme-ligand complex is
also utilized for catalytic turnover [66].

Engineering enzyme-substrate affinity involves tailoring enzymes’ interactions with
their substrates and products, thereby enhancing enzyme specificity, promiscuity [67], or
product release, even altering the final product’s composition [68]. Key determinants of
substrate recognition are the shape of the active site and binding pocket, the conformations
they can adopt, the combination of electrostatic, hydrophobic, hydrogen bonding, and van
der Waals interactions [69–71], and the entrance tunnels [72].

A comparative analysis of homologous proteins with varying substrate specifici-
ties facilitates the identification of these key structural determinants [66]. In addition,
energy-based docking solutions, such as AutoDock 4 (slower, more interpretable) [73] and
AutoDock Vina (faster, superior results) [74], quantify protein-ligand binding affinities
in silico, relatively accurately. The Molecular Mechanics Generalized Born Surface Area
(MMGBSA), or the more rigorous Molecular Mechanics PB Surface Area (MMPBSA), ap-
proach provides an even better prediction of binding energy and can dissect interactions
using per-residue free energy decomposition or alanine scanning [75–77]. The CAVER,
CAVER Analyst and CaverDock suites provide powerful tools for analyzing enzymes
with buried active sites to identify bottlenecks in substrate binding or product release and
quantify binding energy between the bound and surface state in static and dynamic protein
structures [78–80].
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2.3.2. Stabilizing Mutations

Thermodynamics provides a useful framework for interpreting the stabilizing effects
of mutations. Stabilizing mutations aim to maximize the Gibbs free energy difference
(∆G f ) between folded and unfolded states of a protein, thereby favoring the more ther-
modynamically stable folded conformation [21,81]. Equation (10) stipulates that protein
stabilization can be principally achieved through adjustments to either the enthalpic (∆H f )
or the entropic (∆Scon f ) components of the system, although deconvoluting the effect of a
structural modification on each term is difficult [21]:

∆G f = ∆H f − T∆Scon f (10)

For instance, mutations such as serine to proline in surface loops limit the confor-
mational entropy of the unfolded state, thus increasing ∆Scon f , and are unlikely to be
interpreted as adding or removing any atomic interactions that contribute to ∆H f [21,81].
Notwithstanding, by measuring the effect on ∆H f experimentally, the results may differ
from the oversimplified interpretation [21].

Advances in biomolecular force fields, thermodynamic cycle analyses, and ML have fa-
cilitated the comprehensive assessment of mutational impacts by employing computational
tools to systematically evaluate the effects of single amino acid substitutions. Such tools
are Rosetta ddg_monomer [82], FoldX [83], ERIS [84], or DeepDDG [85] which predict the
∆∆G f of a protein induced by a point mutation, either given by the difference in energy be-
tween the WT structure and the point mutant structure, calculated by a forcefield, or, in the
last case, via DL. By leveraging these predictors and implementing in silico site-saturated
mutagenesis, FireProt’s energy-based approach scores suggest single-point mutations by
the predicted ∆∆G f from Rosetta and FoldX with 100% precision and 0% false-positive
rate on experimental datasets (after filtering with conservation analysis by the Rate4Site
tool [86]), albeit at the expense of omitting some [87].

2.3.3. Flexibility

Enzymes are inherently dynamic and flexible macromolecules, characterized by inter-
nal conformational motions essential for substrate binding, product release, and potentially
the catalytic mechanism itself [20,88,89]. Flexibility is often evaluated using B-factors
(Debye-Waller factors, temperature factors, or atomic displacement parameters) derived
from X-ray crystallography [90]. These factors quantify atomic displacement or mobility
within the crystalline structure, providing a detailed view of the enzyme’s dynamic proper-
ties at an atomic scale. Regions characterized by lower B-factors exhibit structural rigidity,
whereas higher B-factors indicate flexible domains that are often integral to substrate bind-
ing and conformational transitions [91]. B-factors can be visualized by PyMOL’s B-factor
putty mode (Figure 3), which illustrates atomic mobility by varying thickness and color
based on flexibility [92,93]. Variability in B-factors across structures of the same molecule
often arises from external influences unrelated to intrinsic molecular properties, such as
experimental conditions or computational methodologies, and, therefore, careful considera-
tion when drawing comparisons between different structures is necessary [90]. Aside from
X-ray structures, B-factors can be computationally estimated using MD simulations [94],
normal mode analysis [95,96], elastic network models [97], and ML models [98].
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2.3.4. Activity-Stability Trade-Off

Enzyme flexibility is a critical determinant of substrate specificity, enabling the dy-
namic structural transitions required for substrate binding, catalytic turnover, and product
release through the “induced-fit” [63] or the “conformational-selection” models [65]. Tra-
ditionally, excessive flexibility has been thought of as undermining structural stability
and being a trade-off with protein activity [100]. Rational protein engineering strategies
have introduced targeted modifications, e.g., disulfide bonds, proline residues, and hy-
drogen bonds, to reduce protein flexibility away from the active site and fine-tune the
activity-stability balance, to great acclaim [21].

The hypothesized trade-off has remained a cornerstone in protein engineering with
numerous studies documenting evidence supporting its existence [20,101–103]. However,
this assumption consequently suggests that a more thermostable enzyme operates as a
slower catalyst compared to a less stable homolog under low-temperature conditions;
that does not typically occur, neither in engineered systems [20] nor when comparing
WT thermophilic and mesophilic homologous enzymes [104]. In fact, thermal stability
can be enhanced by increasing conformational entropy upon folding (∆Scon f ), thereby
generating a more thermostable enzyme while preserving flexibility (Equation (10)). In this
case, a more thermostable enzyme may exhibit greater flexibility compared to a less stable
homolog, if the increase in ∆Scon f results from an increase in the conformational entropy of
the native state (Scon fF ) [20,105]:

∆Scon f = Scon f F − Scon fU (11)

Directed evolution studies further illuminate this dynamic, as engineered enzymes
frequently achieve enhanced stability or activity without corresponding losses, show-
casing the possibility of decoupling these properties [20], as is clearly the case with all
reported directed evolution studies of the PET-degrading PETase from Ideonella sakaiensis
(IsPETase) [106]. Nevertheless, strategies such as directed evolution and rational design are
employed to navigate this balance, aiming to enhance both stability and activity without
compromising either [4,107,108].
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2.3.5. Structure-Function Engineering Insights

To enhance the activity, specificity, and stability of enzymes, a variety of engineering
approaches have been developed (see Section 3). Table 1 provides an overview of key modi-
fications used in protein engineering—regardless of their discovery strategy—outlining their
mechanisms and typical effects in terms of activity, substrate affinity, and stability while ac-
knowledging that any modification inherently impacts multiple attributes. Figure 4 showcases
specific applications of these modifications. Less common enhancements such as allosteric site
engineering [109] and helix capping also contribute to enzyme optimization [110].
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of catalytic amino acids by single-point mutation E49Q decreases pHopt in ATA-Afu [58]; (d) L627R
in BaPul introduces hydrogen bonds, leading to pKa shifts for D622 and E651 and increased activity
and stability at pH 4.0 [121]; (e) Expressing WT LCC in Pichia pastoris introduces N-glycosylation and
increases thermal stability [117]; (f) Grafting an active site loop from LCC to Mors1 increases Topt and
activity [122]; (g) I203F in HSL_E40 improves thermal stability through hydrophobic interactions [123];
(h) Q19E in subtilisin BPN’ introduces a salt bridge, increasing Tm [124]. LCC: leaf and branch compost
cutinase; ATA-Afu: amine transaminase from Aspergillus fumigatus; BaPul: Bacillus acidopullulyticus
pullulanase; Mors1: Moraxella sp. TA144 cutinase; HSL: hormone-sensitive lipase.

Table 1. Key modifications in protein engineering and approaches that enable them.

Modification Mechanism Primary Effects Engineering
Approach Refs.

Single-point
mutations

Selective single point mutations
with energetically favorable
residues (minimizing ∆∆G f ),

residues important for substrate
binding (surface

electrostatics/hydrophobicity) or
enhancing activity.

activity ↑↓**
affinity ↑↓
stability ↑↓

RD, SRD, DE,
ML *

[4,12,21,106,
111]

Disulfide bridges

Covalent linkage of cysteine
residues to rigidify the protein

backbone and constrain
conformational freedom.

stability ↑
activity ↓
(typically)

RD, ML [4,12,21,112]

Shifting pKa values

Modifying electrostatic
microenvironment with

single-point mutations to fine-tune
the pKas of catalytic residues.

activity ↑ (in
different pH) RD, DE [11,58,59,113]

Hydrogen bond
network

optimization

Modification of hydrogen-bonding
network to reinforce affinity with
substrate and active site stability.

activity ↑
affinity ↑ RD [114]

Salt bridges Introducing salt bridges to
reinforce protein structure. stability ↑ RD [12,21,115]

Glycosylation Introducing sites for post
translational modifications. stability↑ RD [116,117]

Surface loop
engineering

Rational remodeling of surface
loops via shortening or loop

grafting.

activity ↑↓
affinity ↑↓
stability ↑↓

RD, SRD [118,119]

Hydrophobic core
packing

Optimized distribution of
hydrophobic residues to eliminate

internal cavities.
stability↑ RD [21,120]

* DE: directed evolution, ML: machine learning, RD: rational design, SRD: semi-rational design. ** ↑: increased,
↓: decreased.

3. Protein Engineering Approaches and Strategies
Protein engineering strategies can be broadly categorized into rational design, directed

evolution, semi-rational design, and, more recently, ML/DL approaches [12]. Figure 5
provides an overview of these schemes.
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Figure 5. Schematic representation of protein engineering approaches. (a) Rational design approach,
including molecular dynamics (MD), docking, binding free energy decompositions, disulfide bond
design, ∆∆G f predictions, and de novo design; (b) directed evolution approach, using epPCR
and activity-based selection assays; (c) semi-rational design, with consensus analysis for hotspots
identification, loop grafting, and ancestral sequence reconstruction (ASR); (d) machine learning (ML)
in protein engineering, showing input sequence and structural data to predict specific mutations. The
consensus sequence logo has been created using Weblogo 3 [125].

3.1. Rational Design

Rational design mainly refers to leveraging knowledge of a target enzyme’s structural
and functional attributes and using computational modeling and simulation frameworks
to predict mutations, insertions, or deletions aimed at augmenting enzymatic performance.
Most recent studies on improving plastic-degrading enzymes primarily adopt a structure-
based approach, exploiting the extensive structural and functional data available for these
enzymes [12]. In return, these enzymes also function as benchmark platforms for advancing
and refining protein engineering methodologies. Another domain of rational design
involves the de novo synthesis of novel enzymes, by incorporating active sites and substrate-
binding pockets predicted to catalyze a reaction of interest into geometrically compatible
native scaffolds [126].

3.1.1. Structure-Based Design

Structure-based rational design relies on computational tools that analyze and manip-
ulate protein structures. These structures may be obtained through experimental methods
(e.g., X-ray crystallography, cryo-electron microscopy, and nuclear magnetic resonance),
homology modeling (e.g., SWISS-MODEL and MODELLER) leveraging information from
similar solved structures, or, lately, DL-based predictors (e.g., AlphaFold 2.0 and ESMFold),
which achieve unprecedented accuracy in structural prediction while maintaining high
computational efficiency [127–129]. Docking software, such as AutoDock Vina, predict



Catalysts 2025, 15, 147 13 of 36

protein-ligand binding modes [74]. Visualization platforms such as PyMOL [130] and
ChimeraX [131] enable detailed analysis of enzymatic structures, facilitating the identifica-
tion of protein regions critical for activity, substrate affinity, and stability. These tools help
pinpoint key protein-ligand interactions (i.e., hydrogen bonds, hydrophobic contacts, elec-
trostatic interactions, steric hindrances, etc.) and evaluate flexibility by analyzing B-factors,
which highlight potential engineering hotspots [93]. Integrated mutagenesis tools allow
for the visualization and evaluation of potential mutations. Energy-based methods (e.g.,
Rosetta ddg_monomer [82] and FoldX [83], both integrated into FireProt [87]) systemati-
cally evaluate the ∆∆G f associated with point mutations, and specialized programs such
as Disulfide by Design 2.0 enable the introduction of disulfide bonds [132].

Similarly, MD simulations using software such as GROMACS [133], AMBER [134], and
CHARMM [135] enable the exploration of protein and protein-ligand dynamics. MD simu-
lations can extract B-factors [94], estimate binding free energies with MMPBSA/MMGBSA,
and decompose the contributions of each amino acid to these energies [75,77]. Additionally,
they provide insights into the frequency and time-dependency of interactions, revealing
how often and for how long contacts (e.g., hydrogen bonds) or conformational states oc-
cur [136]. They can also calculate the activation energy barrier of a reaction using quantum
mechanics/molecular mechanics and umbrella sampling [137], as well as model reaction
mechanisms at an atomic level [138]. The simulated trajectories can be analyzed to reveal
conformational clusters representing accessible states [139], while Markov State Models
may be used to characterize these states by their populations and transition kinetics [140].
In addition, Principal Component Analysis reduces the dimensionality of the configura-
tional space by unveiling the dominant modes of motions [141] and also allows plotting
of the free energy landscape projected onto principal components [142]. Furthermore,
Constant-pH MD addresses the limitation of fixed protonation states by allowing titratable
residues to dynamically switch between protonated and deprotonated forms, capturing
pH-dependent behaviors and allowing the determination of their pKa values [57]. More-
over, MD simulations can explore the denaturation of proteins by simulating them under
diverse thermal or environmental conditions [143,144].

3.1.2. De Novo Design

The overarching goal of protein engineering is the de novo development of enzymatic
functions derived from first principles [66], once considered to be impossible [145]. Leverag-
ing computational methods to create structures and functionalities absent in nature, “true”
de novo design aims to construct entirely new proteins from scratch, relying purely on com-
putationally generated backbones, while the “minimalist” approach utilizes known stable
protein folds as the foundation for introducing new functional sites, aiming to establish the
feasibility of a catalytic reaction [146]. Computational tools, such as Rosetta [147,148], play
a pivotal role in designing scaffolds and optimizing sequences for functional and structural
refinement [149]. Rosetta Match [150] and AsiteDesign [151] extend these capabilities
by enabling the precise redesigning or grafting of active sites onto protein scaffolds and
engineering the stability of the transition state [152].

Although de novo-designed enzymes frequently exhibit limited catalytic efficiencies,
iterative optimization through directed evolution, discussed in the following section, or
other engineering approaches can substantially enhance their performance [153]. Despite
the inherent challenges, advances in computational frameworks continue to highlight
the potential of this approach [154]. Prominent achievements include the development
of catalysts for Diels-Alder reactions [155], ester hydrolysis [156], and retro-aldol reac-
tions [157]. In the context of plastic-degrading enzymes, a polycarbonate hydrolase has
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been successfully designed de novo by introducing a catalytic site into a thermostable
scaffold [158].

3.2. Directed Evolution

Directed evolution has accelerated the optimization of polymer-degrading enzymes,
providing robust complementarity to rational design. In contrast to rational design, which
demands detailed structural and functional insights to guide enzyme engineering, di-
rected evolution operates independent of prior knowledge regarding structure-function
relationships, establishing it as an exceptionally versatile approach, particularly valuable
for enzymes with limited structural characterization [159].

By simulating natural selection, directed evolution iteratively generates extensive li-
braries of enzyme variants and screens them to identify enhanced traits. In vitro Polymerase
Chain Reaction (PCR)-based methodologies, including error-prone PCR (epPCR), Site Satu-
ration Mutagenesis (SSM) (focused mutagenesis), and recombination-driven DNA shuffling,
represent the principal strategies for exploring the mutational landscape [160], although
SSM could be considered part of all engineering approaches after identifying hotspots.

However, despite its transformative potential, directed evolution presents inherent
challenges. The primary bottleneck in directed evolution experiments lies in identifying im-
proved variants, which heavily depends on high-throughput screening platforms tailored
to the specific enzymatic activity under investigation [160,161]. Furthermore, inherent bi-
ases introduced by the experimental methodologies (e.g., the preference of Taq polymerase
for AT → GC transitions and AT → TA transversions in epPCR) further limit exploration of
the mutational landscape. Lastly, even protein libraries containing millions of variants can
only probe an infinitesimal fraction of the immense sequence space theoretically available
for an average protein [160,162].

3.3. Semi-Rational Design

Semi-rational design leverages computational tools to extract evolutionary insights
from homologous proteins based on conserved sequences, structures, and functional data
with a focus on creating small, high-quality mutational libraries, allowing for more effi-
cient sampling of sequence space [13]. Databases such as the Protein Data Bank (PDB),
UniProt [163], CAZy (Carbohydrate-Active enZYmes) database [164], and PAZy (Plastics-
Active enZYmes) database [165] catalog comprehensive protein data including sequences,
structures, functional information, and the organism of origin. To capitalize on that, the
Basic Local Alignment Search Tool (BLAST) [166] and Many-against-Many sequence search-
ing (MMseqs2) [167] identify homologous proteins through sequence analysis. Recently,
advancements in computational structure prediction, as illustrated by AlphaFold 2.0 [127],
have enabled tools such as Foldseek to perform rapid and precise structural homolog
searches across extensive protein databases [168], often achieving higher sensitivity than
sequence-based methods since structural cores evolve slower than sequences [169].

Back-to-consensus design is a semi-rational protein engineering strategy that exploits
evolutionary information to enhance protein stability [13,170]. By aligning homologous
sequences, conserved residues are identified, reflecting evolutionary pressure for functional
importance. Target proteins are mutated to match the consensus sequence, increasing melt-
ing temperatures by 10–32 ◦C. However, not all conserved residues contribute positively to
stability, as approximately 50% are stabilizing, 10% are neutral, and 40% are destabilizing,
thus requiring precise selection. Full-length de novo sequences using the most frequent
residues can also be constructed with some success [13].

Ancestral Sequence Reconstruction (ASR) infers the sequences of ancient proteins by
analyzing and comparing the sequences of their modern descendants using phylogenetic
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methods [13]. The functional and structural properties of ancient proteins often reveal
enhanced stability, elevated promiscuity, or functionalities that have been lost or modified
in contemporary proteins [171]. ASR has been successfully used by Pfizer Inc. to engineer
ene-reductases with enhanced thermostability [172], utilizing the FireProtASR tool [173].

The persistence of specific amino acids within proteins of the same family across evo-
lutionary timelines illustrates the need to maintain the protein’s biological activity. ConSurf
analyses evolutionary conservation at the residue level, identifying sites under intense selec-
tive pressure that are likely important for maintaining structural or functional integrity. The
results are presented as a color-coded visualization superimposed on the protein structure,
ranging from variable to highly conserved residues [174]. Utilizing this concept, HotSpot
Wizard identifies and evaluates evolutionary variable amino acids in the active site or
along the access tunnels as key targets for mutagenesis [175]. Concurrently, residue-residue
coevolution can be uncovered using GREMLIN [176] and EVcouplings [177] for uncovering
epistatic interactions (i.e., where consequences of a mutation in one residue are dependent
on the state of another) and has been proposed as a strategy to design smart mutational
libraries [178].

Structure-based recombination approaches, such as SCHEMA [179], decompose pro-
teins into structurally compatible fragments, facilitating the generation of chimeric libraries
that preserve core folds and minimize misfolding by choosing the least disruptive crossover
locations, generating functional chimeric proteins [180]. Similarly, LoopGrafter has demon-
strated remarkable efficacy, achieving a 40,000-fold enhancement in the bioluminescence
efficiency of the grafted variant relative to the scaffold enzyme of an ancestral dehalogenase-
luciferase [118,181].

3.4. Machine Learning and Deep Learning

The integration of ML into protein engineering represents a revolutionary shift in
the field, offering an unprecedented capacity to predict structures from sequences with
exceptional speed and accuracy, navigate high-dimensional sequence-function landscapes,
and generate optimized protein variants that surpass the limitations of traditional protein
engineering approaches. Expansive databases, modern model architectures, and present-
day hardware have culminated in successful uses of this technology in enzyme engineering,
showcasing the transformative potential of ML in streamlining the development of more
efficient and stable enzymes [182]. ML encompasses a diverse set of algorithms and
techniques for predictive tasks and pattern recognition, including decision trees, support
vector machines, k-nearest neighbors, linear regression models, and neural networks
(NNs) [183,184].

NNs, inspired by biological neural structures, become “deep” upon incorporating
two or more hidden layers [183]. DL, a subset of ML, has transformed data science by en-
abling breakthroughs in areas such as computer vision, natural language processing (NLP),
autonomous systems, and, of course, protein engineering [185]. Deep neural networks
construct hierarchical feature representations, wherein layers proximal to the input data
capture elementary patterns while successive, deeper layers deduce increasingly abstract
and complex features. These architectures inherently demand access to extensive datasets
and substantial computational resources to achieve effective model performance [183].

Advancements in accessible hardware and community-driven tools such as Colab-
Fold [186], supported by Google Colab, have greatly enhanced the reach of ML applications.
Hugging Face (huggingface.co) offers a comprehensive suite of DL resources, including a
vast repository of pre-trained models and datasets spanning diverse domains, including
emerging applications such as protein engineering. Their open-source libraries, such as
Transformers [187], enable efficient integration with widely used DL frameworks, includ-
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ing PyTorch and TensorFlow, streamlining the construction, training, and deployment of
ML models.

3.4.1. ML Paradigms

Supervised learning involves predicting specific properties from labeled datasets by
establishing a mapping between inputs (e.g., enzyme sequences or structures) and outputs
(e.g., enzyme structures or properties, respectively). This is achieved by minimizing
the error between the model’s predictions and the provided labels [188]. For example,
a training dataset might include enzyme sequences (inputs), annotated/labeled with
experimentally determined characteristics such as structures, or properties such as thermal
stability, substrate specificity, or catalytic efficiency (outputs). AlphaFold 2.0 serves as a
prominent example of a supervised learning-based approach by utilizing sequences as
inputs and experimental structures as labels, with the data originating from PDB, and
demonstrates exceptional accuracy in predicting protein structures [127].

Unsupervised learning enables the identification of hidden patterns and relationships
in unlabeled data by generating outputs that replicate the given input data and using
the errors in these outputs to refine the model. It is commonly applied in tasks such as
clustering and representation learning. In representation learning, models are trained to
encode data in a format that is beneficial for subsequent tasks by mapping high-dimensional
inputs to low-dimensional spaces [189], often as part of pre-training [190]. Pre-trained
models can then be adapted or fine-tuned for specific downstream applications through
transfer learning. This approach is frequently used with large Protein Language Models
(PLMs) to minimize further training requirements and effectively leverage smaller labeled
datasets [191]. A prime example is the ESM model from Meta’s Fundamental AI Research
Protein Team, which is trained to predict the identity of randomly masked amino acids in
protein sequences [192]. These models can be fine-tuned/trained [193], modified [194], or
used as feature extractors/encoders [128] for subsequent supervised learning tasks.

Semi-supervised learning is a hybrid approach that combines a small set of labeled
data with a larger set of unlabeled data. By leveraging the structure of the unlabeled data,
semi-supervised models improve prediction accuracy by learning a better representation
of the input, while reducing reliance on extensive experimental annotations, particularly
advantageous in protein engineering, where experimental datasets are often limited [184,195].

Reinforcement Learning (RL) emerges as a powerful tool for exploring protein
sequence-function landscapes. In the RL setting, an agent proposes actions (e.g., amino
acid substitutions or entire protein sequences) and observes feedback (a “reward”) that
reflects how well those designs perform (e.g., measured experimentally or predicted by a
model). RL methods continually update their strategy (policy) to propose better designs
without necessitating a predefined labeled dataset, as the necessary annotations are gen-
erated dynamically throughout the experimental process [184]. This paradigm has been
successful in simulating directed evolution, either in silico or in combination with in vitro
experiments [196,197], and generating compounds predicted to interact effectively with
biological targets [198].

3.4.2. Training Datasets

A robust foundation for ML training is provided by accurate and well-structured en-
zyme databases. PDB, UniProt [163], and other standardized datasets, such as CASP [199],
provide sequence and structural data that can be used for representation learning [200],
pre-training [192], or training structure predictors [127,128]. NCBI [201], JGI IMG [202],
and BacDive [203] databases collectively provide taxonomic, sequence, and cultivation
data that have been used in the training of ThermoProt [204] and Preoptem [205], enabling
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them to classify enzymes as thermophilic or mesophilic. CAZy and PAZy can be used
to train classification models for natural and synthetic polymer-degrading enzymes or
organisms based on their substrates [206,207]. BRENDA [208] and Sabio-RK [209] catalog
kinetic parameters and are used for training kinetic predictors, such as DLKcat [210] and
TurNuP [211], while EnzymeML provides a framework for standardizing kinetic data ex-
change [212]. For stability, SAPPHIRE [213], ProThermDB [214], and FireProtDB [215] offer
sequence and mutation-specific thermostability data, enabling tools such as DeepDDG [85]
and ThermoMPNN [216]. BindingDB [217] and PDBbind [218] catalog protein-ligand affin-
ity data, SoluProtMutDB [219] curates mutational data on soluble expression, the SignalP
6.0 [220] dataset supports signal peptide detection, and MutaDescribe [221] provides rich
textual annotations for the effects of mutations on proteins. Additionally, databases such
as GotEnzymes [222] and AlphaFoldDB [223] have initiated the systematic organization
of predictions derived from AI tools, thereby streamlining access to experimentalists and
facilitating deeper engagement with the field.

3.4.3. Model Architectures

Traditional ML models, such as random forests [224] and gradient boosting [225],
remain valuable for tasks where well-labeled and moderately sized datasets prevail. How-
ever, recent breakthroughs in DL model architectures have largely amplified the impact
of such databases. Convolutional Neural Networks (CNNs) are a type of DL architecture
characterized by hidden layers that are locally connected to subsequent layers through
convolutional filters (also called kernels), traditionally used for computer vision. This local
connectivity enables CNNs to efficiently extract local features, which are then hierarchically
combined into more complex representations [226]. In the field of protein engineering,
CNNs have demonstrated great predictive power and capability in learning the fitness
landscape of proteins [227]. CNNs have been applied in binding site detection [228], op-
timal amino acid prediction [111], thermostability estimation [205], and de novo protein
design [229], addressing the inverse folding problem.

In recent years, borrowing techniques from NLP, pre-trained PLMs, such as Prot-
BERT [191] and ESM-2 [128], have leveraged transformer-based architectures with multi-
head attention mechanisms. The attention mechanism enables these models to selectively
focus on the most relevant aspects of the input by assigning varying levels of importance,
or “weights”, to different parts of the sequence, thus allowing the models to effectively
capture both local and global dependencies across the entire input sequence through the
use of multiple attention heads [230]. By learning these patterns, PLMs have become highly
effective for predicting protein structures, annotating functions, and assessing the effects of
mutations. For example, ProtBERT has been applied in tools such as SignalP 6.0 [220] and
BertThermo [231], ESM-2 powers applications such as ESMFold [128] and PepMLM [232],
ProtGPT2 enables de novo protein design [233] and, while not technically a PLM, Al-
phaFold 2.0 is a prominent example of a model that applies attention mechanisms within
its Evoformer block to accurately predict protein structures from their sequences [127].
Transformer-based PLMs have largely replaced CNNs in popularity due to their often
superior performance. However, it is important to note that CNNs can still be competitive
and, in specific contexts, outperform transformer-based architectures [234–236].

In parallel with these developments, diffusion models have recently emerged as
promising generative approaches that iteratively refine random noise into structured
and coherent outputs and were originally popularized for generating images from text
prompts [237,238]. Their applications span docking [237], de novo design with RFdiffu-
sion [238], NNPs [239], and structure prediction with AlphaFold 3 [240]. Graph Neural
Networks (GNNs), on the other hand, treat proteins as graphs, where amino acid residues
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(or atoms) serve as nodes and edges represent interactions or spatial proximity [241]. As
a result, GNN-based methods have shown promise in tasks such as predicting protein-
protein interactions [241] and protein solubility [242] in NNPs [243] and de novo sequence
design from structure in ProteinMPNN [126,244].

3.4.4. Interpreting ML Models

Interpreting the predictions of ML models in protein engineering is important for
uncovering insights into fundamental protein sequence-function or structure-function
relationships. Traditional ML models, such as decision trees, random forests, and linear
regression, are inherently interpretable. These models clearly show how input features
influence predictions, whether through detailed decision pathways, feature importance
metrics, or coefficients, making them highly useful for exploratory research [245]. However,
understanding the predictions of DL models, which are generally more accurate, can be
difficult because of their large size and complex architecture.

CNNs process input data by extracting features using filters, focusing on key regions
that significantly impact the output. During training, these filters identify patterns from
the input dataset important to predictions, thereby elucidating the relationship between
input features, such as structure, and predictive outcomes, such as function [246]. Like-
wise, attention mechanisms in transformer-based models also enable the identification of
critical input regions influencing predictions, by analyzing the attention scores given to
each input token, providing insights into the relationship between the input data and the
prediction, thereby also enabling the visualization of sequence-function relationships [247].
Unsupervised techniques, such as Sparse Autoencoders, aid in extracting latent repre-
sentations by compressing high-dimensional data into lower-dimensional, interpretable
forms, uncovering patterns across datasets. For example, InterPLM extracted 143 biological
concepts (e.g., functional domains and structural motifs) learned by the PLM ESM-2 from
its unsupervised training [248]. Additionally, recent advancements and the incorpora-
tion of Chain-of-Thought (CoT), prompting strategies in systems such as MutaPLM [221],
have demonstrated progress in providing human-readable step-by-step explanations for
mutational effects.

4. Lessons from the Industrial Application of Engineered PETases
The escalating issue of plastic waste accumulation has driven significant research into

enzymatic strategies for plastic degradation, as traditional waste management techniques,
such as incineration and landfill disposal, not only fail to address the scale of this issue but
also contribute to additional environmental concerns, including greenhouse gas emissions
and microplastic soil contamination [249,250]. Furthermore, traditional thermomechanical
recycling methods degrade plastics, such as PET, due to chain breakage, crystallinity
increase, and chemical degradation of their building blocks [16]. In this context, enzymes
capable of catalyzing the breakdown of polymeric materials offer a sustainable and eco-
friendly alternative for addressing the plastic waste crisis [12]. PETases stand out as efficient
and potentially transformative biocatalysts for tackling PET pollution and supporting
sustainable material reuse in a circular economy [251], with an already industrialized
application made possible by protein engineering of LCC [3,4,18].

4.1. Biocatalysis of PET

Enzymes responsible for PET depolymerization are part of the Enzyme Commission
number (EC) 3.1.1 class of carboxylic ester hydrolases [208] and feature a catalytic triad
(Ser-His-Asp) typical of the α/β hydrolase superfamily. PET degradation occurs in a
hydrophobic cleft on the surface of PETases, which facilitates interaction with the polymer.
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The hydrolysis of ester bonds begins with the catalytic serine’s oxygen atom attacking
the carbonyl carbon of the scissile ester bond, leading to bond cleavage (Figure 2) [18].
PETases, either alone or synergistically with mono(2-hydroxyethyl) terephthalate (MHET)
hydrolases (MHETases), fully depolymerize PET to its monomers, i.e., ethylene glycol and
terephthalic acid [252].

The first highly efficient PET depolymerase, Thermobifida fusca cutinase (Tf Cut), was
reported in 2005 [18,253], bringing significant attention to cutinases and lipases for PET
bio-recycling. Since then, other PET-degrading enzymes have been isolated from various
taxonomic groups, with benchmark LCC [254] and IsPETase [252] being the most widely
studied and cited in the field. LCC is recognized as the most effective WT PETase at
temperatures exceeding the glass transition temperature of PET (~70 ◦C), while IsPETase
demonstrates the best performance at moderate temperatures (<45 ◦C) [255], with melting
temperatures (Tm) of ~84.7 ◦C and ~46.4 ◦C, respectively [4].

Protein engineering has played a pivotal role in transitioning PETases from an aca-
demic curiosity focus to industrially relevant targets. WT PETases, while effective at
degrading PET under laboratory conditions, exhibited limitations such as suboptimal
catalytic efficiency and low thermostability at industrially relevant temperatures, as well as
poor activity on semi-crystalline PET, rendering them unsuited for industrial applications.
Through iterative rounds of rational design, directed evolution, semi-rational design, and
ML, these challenges are being systematically addressed [256].

4.2. Protein Engineering of PETases

Engineered variants of benchmark enzymes such as IsPETase and LCC have demon-
strated outstanding performance in terms of catalytic activity and durability, making them
viable candidates for industrial deployment, highlighting the transformative potential of
the aforementioned protein engineering approaches in addressing diverse modern chal-
lenges through optimized or completely novel enzymatic systems [3]. Table 2 showcases
notable applications of protein engineering in PETase optimization. In column 3 (targeted
properties), the first property mentioned corresponds to the main target of each study,
while the rest were of secondary consideration to the researchers; this emphasizes the syn-
ergistic integration of multiple protein engineering strategies for optimal results. Figure 6
highlights all residues of IsPETase and LCC modified in the studies presented in Table 2,
demonstrating their diverse positions, not solely concentrated close to the active site but all
over the enzyme, inside and outside.

Rational design examples are plentiful in PETase engineering, mostly aiming for
increased stability and modulating PET binding affinity. The most influential PETase
engineering study is the engineering of LCC to LCCICCG (Table 2, study 10), which was
later industrialized for PET bio-recycling. In this study, a disulfide bond was introduced
at sites D238C and S283C to increase stability, which resulted in a ∆Tm = +10 ◦C, albeit
with a 28% decreased activity (LCCCC). Point mutation F243I on LCCCC regained activity
22% higher than WT but decreased ∆Tm to +6.6 ◦C (LCCICC). The latter was proposed by
identifying hotspots through in-silico docking studies, SSM, and experimental screening.
Finally, Y127G from the same docking and SSM study did not affect activity but increased
melting temperature, resulting in LCCICCG and demonstrating ∆Tm = +9.3 ◦C and 82% PET
conversion in 20 h compared to 53% of WT at 72 ◦C [4]. Study 11 (LCCICCG-RIP) focused
on (i) introducing proline residues, (ii) introducing hydrophilic interactions on the surface,
and iii) increasing internal hydrophobic interactions to further increase the stability of
LCCICCG [257]. The GRAPE strategy, which includes ∆∆G f calculations with FoldX and
Rosetta, among others, for identification of stabilizing mutations, was utilized to engineer
DuraPETase (Table 2 study 6), an IsPETase variant, and TurboPETase (Table 2 study 16), a
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BhrPETase variant [258,259]. For engineering substrate affinity, Studies 8 (CombiPETase),
9 (TS-∆IsPET), and 14 (LCC-A2) all employed docking methodologies to identify hotspot
residues in the active site of the respective enzymes, significantly increasing activity in all
cases [257,260,261].
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Directed evolution approaches for evolving IsPETase stability are represented by
studies 1 and 2 of Table 2, which resulted in a significant increase in Tm with multiple
mutations [262,263]. In the case of DepoPETase, semi-rational design was also used to
further identify mutation R260Y via focused SSM of positively charged amino acids on the
opposite side of the substrate-binding pocket, and D186H and N233K were obtained from
the literature, further refining the obtained variant [263].

Semi-rational design approaches were also used for engineering IsPETase (Table 2 stud-
ies 5, 7, 8, and 9) and LCC (Table 2 study 12). Study 3 identified mutations S121D/D186H
for IsPETase based on structural comparison with Tf Cut, where these residues generate
a hydrogen bond that stabilizes the β6-β7 loop [264]. In study 8, an ASR approach was
used to identify IsPETase mutation K95N, which exhibited an increase in thermal stability
and activity [260]. In study 5, eight hotspots were identified in the binding site of IsPETase
by examining four homologs (smart library) and deeming them variable. After focused
mutagenesis, a combinatorial approach and insights from the literature yielded the final
variant that exhibited 58-fold increased activity at 37 ◦C compared to WT [265]. Studies 7
and 9 employed similar concepts, utilizing IsPETase’s homologs to calculate the likelihood
and conservation of amino acids in specific positions, respectively. In the first case (study
7), the Premuse tool was developed to calculate position-specific amino acid probabili-
ties from a library of homologs, guiding mutation selection and generating a variant with
∆Tm = +10.4 ◦C and 40-fold activity increase at 40 ◦C in 24 h [266]. In the later study (study
9), conservation analysis was used to avoid the substitution of highly conserved residues
using Rate4Site [86,261]. Additionally, study 12 identified hotspots on LCCICCG based on
two approaches. First, a conservation scheme categorized 4203 homologous proteins into
high and low-temperature datasets, based on scoring from the DL-based tool Preoptem,
and determined the probability of amino acids at each position, identifying 18 candidate
mutations that were not only conserved in the high-temperature dataset but also absent



Catalysts 2025, 15, 147 21 of 36

from the low-temperature dataset and the target protein. The second approach followed
a coevolutionary scheme utilizing EVcouplings to identify hotspots, which were subse-
quently screened through EVmutation and Preoptem scoring functions, further identifying
18 additional mutations. Experimental validation independently screened six beneficial
mutations and LCCICCG_I6M. Incorporating all six demonstrated an increased Topt from
65 ◦C to 75–80 ◦C for 39% crystalline PET [267].

Machine learning has been used to improve BhrPETase (Table 2, study 16), IsPETase
(Table 2, studies 4, 6, and 7), and LCC (Table 2, study 12). In the case of BhrPETase, a PLM,
trained with a masked language modeling objective on ~26,000 homologous sequences
to predict the real amino acid at the masked position, was used to suggest mutations that
improved activity but resulted in decreased thermal stability. After the rational design of
stabilizing mutations, the final variant, with a Tm = 84 ◦C and a 3.4-fold improvement in
specific activity towards PET films compared to WT, was obtained [259]. In the case of
IsPETase variant FAST-PETase (study 4), the CNN-based MūtCompute, trained to predict
the masked amino acid at the center of a chemical environment extracted from a protein
structure [268], was used to obtain a discrete probability distribution for the structural fit of
all 20 canonical amino acids at every position, identifying mutations S121E, T140D, R224Q,
and N233K and combinatorically assembling them across IsPETase, Thermo-PETase, and
DuraPETase to obtain the best variant containing N233K and R224Q on top of Thermo-
PETase [111].

Other non-typical approaches include: (i) study 15, in which LCC was expressed
in Pichia pastoris, increasing thermal stability and activity through the introduction of N-
glycosylation [117], (ii) study 18, in which an active site loop from LCC was grafted to Mors1,
resulting in a shift in optimal temperature from 25 ◦C to 45 ◦C and a 5-fold increase in PET
hydrolysis compared with WT at 25 ◦C [122], (iii) study 19, in which a PETase was designed
de novo [269], and (iv) study 20, in which IsPETase was fused with IsMHETase, separated
with a linker, improving turnover relative to the free enzymes [270]. An unconventional
but notable filter in study 14 (LCC-YGA) incorporated a correlation-based accumulated
mutagenesis (CAM) strategy that accounts for the amino acids exhibiting highly correlated
or anti-correlated motions. Through MD simulations, the correlation is quantified by the
covariance between the fluctuations of two atoms. Mutations are then introduced in regions
with little cross-correlated dynamics [271].

Noteworthily, optimizing both the enzyme’s active site and distal regions is crucial for
enhancing catalytic efficiency and overall stability (Figure 6). For instance, incorporation
of disulfide bonds, proline residues, and other stability-enhancing mutations consistently
raises the melting temperature and broadens the operational range of PETases, typically
without overly compromising enzymatic activity. Additionally, rational and semi-rational
approaches synergize effectively with directed evolution and ML-driven approaches to
pinpoint beneficial substitutions at a scale and speed not achievable through trial-and-error
alone. The most comprehensive studies integrate multiple methodologies and systemati-
cally rationalize obtained results, even when they initially manifest as random changes.



Catalysts 2025, 15, 147 22 of 36

Table 2. Protein engineering examples for enhancing PETases.

# Enzyme Targeted Properties Engineering
Strategies Modifications Results Ref

1 HotPETase stability,
activity DE

IsPETase variant: S121E, D186H, R280A,
P181V, S207R, S214Y, Q119K, S213E, N233C,
S282C, R90T, Q182M, N212K, R224L, S58A,
S61V, K95N, M154G, N241C, K252M, T270Q

∆Tm = +35.5 ◦C [262]

2 DepoPETase
stability,
affinity,
activity

DE,
SRD (focused surface charge mutations with

SSM),
literature

IsPETase variant: T88I, D186H, D220N,
N233K, N246D, R260Y, S290P

∆Tm = +23.3 ◦C
1407-fold more products towards

amorphous PET film at 50 ◦C
[263]

3 Thermo-PETase stability,
activity

RD (structure-based approach),
SRD (adopting features from homolog TfCUT),

literature
IsPETase variant: S121E, D186H, R280A ∆Tm = +8.81 ◦C

activity enhanced by 14-fold at 40 ◦C [264]

4 FAST-PETase stability ML Thermo-PETase variant: N233K, R224Q
2.4- and 38- fold higher activity at 40 and

50 ◦C, respectively, compared to
ThermoPETase

[111]

5 IsPETase variant affinity,
stability SRD (smart libraries from homologs), literature

IsPETase variant: S121E, D186H, S242T,
N246D

(based on Thermo-PETase)

∆Tm = +12 ◦C
58-fold increased activity at 37 ◦C [265]

6 DuraPETase stability,
activity RD

(
∆∆G f )

IsPETase variant: S214H, I168R, W159H,
S188Q, R280A, A180I, G165A, Q119Y, L117F,

T140D

Enhanced degradation performance
(300-fold) on semicrystalline PET films at

40 ◦C
[258]

7 IsPETase variant stability,
activity SRD (position-specific amino acid probabilities) IsPETase variant: W159H, F229Y ∆Tm = +10.4 ◦C

40-fold activity increase at 40 ◦C in 24 h [266]

8 CombiPETase
affinity,
stability,
activity

RD (MD, engineering flexibility engineering,
disulfides, hydrophobic core packing, hydrogen

bond breaking),
SRD (ASR),
literature

IsPETase variant: K95N, S136E, A179C,
D186A, S214T, N233C, S282C

∆Tm = +27.2 ◦C
4.25-fold increased activity when compared

to WT at their respective Topt
24.6-fold increased protein yield

[260]

9 TS-∆IsPET
activity,
affinity,
stability

RD (identifying hotspots through protein-ligand
interaction analysis with MD, rational mutations,

salt bridge),
SRD (conservation analysis followed by SSM),

literature

IsPETase variant: S121E, W159H, D186H,
F238A

∆Tm = +4.9 ◦C
Increased catalytic activity on PET [261]

10 LCCICCG stability RD (docking to identify hotspots followed by
SSM, disulfide design) LCC variant: F243I, D238C, S283C, Y127G ∆Tm = +9.3 ◦C 82% PET conversion in 20 h

compared to 53% of WT at 72 ◦C [4]

11 LCCICCG_RIP stability RD (proline residues, hydrophilic surface,
hydrophobic core) LCCICCG variant: A59R, V63I, N248P More products at 85 ◦C [272]
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Table 2. Cont.

# Enzyme Targeted Properties Engineering
Strategies Modifications Results Ref

12 LCCICCG_I6M
activity,
stability

ML,
SRD (coevolutionary analysis)

LCCICCG variant: S32L, D18T, S98R, T157P,
E173Q, N213P

Topt for 39% crystalline PET increased from
65 ◦C to 75–80 ◦C [267]

13 LCC-A2 affinity RD (docking) LCCICCG variant: H218Y, N248D
∆Tm = +1.11 ◦C

Increased relative activity by 80.1% at 78 ◦C
compared to LCCICCG

[257]

14 LCC-YGA affinity,
activity

RD (remodeling hydrophilicity of binding site,
correlation based accumulated mutagenesis

strategy),
SRD (homolog information),

literature

LCCICCG variant: H183Y, L124G, S29A 2.07-fold hydrolytic activity of LCCICCG [271]

15 LCC-G stability RD (glycosylation)
Introduction of N-linked glycosylation at
sites N197, N239, and N266 by expressing

WT LCC in Pichia pastoris

Increased Tm,
at 70 and 75 ◦C, 1.6- and 1.2-fold more

active, respectively
[117]

16 TurboPETase stability,
activity ML, RD

(
∆∆G f ), literature BhrPETase variant: H218S, F222I, W104L,

F243T, A209R, D238K, A251C, A281C

Tm = 84 ◦C and a 3.4-fold improvement in
specific activity

towards GF-PET films
[259]

17 Est1 variant stability SRD (consensus design) Est1 variant A68V, T253P Increased Tm and activity [273]

18 Mors1 chimera activity SRD (loop exchange) Loop exchange of an active site loop from
LCC

Shift in optimal temperature from 25 ◦C to
45 ◦C, increase 5x in PET hydrolysis when

compared with WT at 25 ◦C.
[122]

19 HSH-25 De novo PETase
activity RD (de novo)

De novo design of a 25 amino acid
thermostable peptide capable of

depolymerizing PET
Confirmed degradation of PET [269]

20 IsPETase-IsMHETase
chimera activity RD (fusion with linker to achieve synergistic

action)
Construction of a bifunctional chimeric

enzyme fusion of IsPETase with IsMHETase

Chimeric proteins of varying linker lengths
all exhibit improved turnover relative to the

free enzymes
[270]

Note: DE: directed evolution, ASR: ancestral sequence reconstruction, BhrPETase: bacterium HR29 polyethylene terephthalate hydrolase, Est1: Thermobifida alba AHK119 cutinase,
IsMHETase: Ideonella sakaiensis mono(2-hydroxyethyl) terephthalate hydrolase, IsPETase: Ideonella sakaiensis PETase; LCC: leaf and branch compost cutinase, ML: machine learning,
Mors1: Moraxella sp. TA144 cutinase, RD: rational design, SRD: semi-rational design, SSM: site saturation mutagenesis, Tf CUT: Thermobifida fusca cutinase.
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5. Conclusions and Prospects
This paper presents a comprehensive review of protein engineering strategies aimed

at enhancing enzyme performance for industrial applications, focusing on key principles,
methods, and lessons learned from industrialized PETases. These efforts illustrate the
transformative potential of protein engineering in addressing industrial and environmen-
tal challenges.

Interdisciplinary collaborations that combine computational enzyme design groups
with experimentalists and dedicated AI researchers hold the potential to unlock new fron-
tiers in protein engineering. Looking forward, the integration of advanced DL frameworks,
such as diffusion models and PLMs, offers exciting prospects for accelerating enzyme
design and bridging the gap between laboratory innovation and industrial implementation,
potentially rendering the protein engineering problem trivial through text prompts to fully
functional designs, just like recent text-to-image models.

Despite their successes, the strategies reviewed exhibit notable limitations. Rational
design, while highly effective, relies on detailed structural and mechanistic data, which are
not always available or straightforward to obtain. Directed evolution, although powerful,
is constrained due to the vast number of potential sequence combinations, experimental
biases, and the need for efficient, high-throughput screening methods. Semi-rational design
remains reliant on comprehensive evolutionary insights which may not always be available
or translate effectively into smart library designs. ML approaches show substantial promise
but often require large, high-quality datasets and considerable computational resources,
which can limit their practical application.

Scaling these strategies for industrial applications presents additional hurdles. All
of these approaches require significant investments in time, expertise, and infrastructure,
which may not always align with the cost-sensitive nature of industrial biotechnology.
While engineered enzymes may demonstrate significantly enhanced activity, stability, and
specificity, their overall production costs, including research, design, scale-up, and the
expected return on investment from societal, environmental, and financial perspectives
must be carefully evaluated to ensure economic viability. Future efforts should prioritize
addressing scalability and cost-effectiveness, alongside a more holistic evaluation of en-
gineered enzymes’ lifecycle impacts. Addressing these factors will help establish protein
engineering as a foundation for versatile and innovative industrial biotechnology.
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Abbreviations

ASR Ancestral Sequence Reconstruction
BLAST Basic Local Alignment Search Tool
CAM Correlation-based Accumulated Mutagenesis
CAZy Carbohydrate-Active enZYmes
CNNs Convolutional Neural Networks
CoT Chain-of-Thought
DFT Density Functional Theory
DL Deep Learning
epPCR error-prone PCR
GNNs Graph Neural Networks
LCC Leaf Compost Cutinase
MD Molecular Dynamics
MHET Mono(2-hydroxyethyl) terephthalate
MHETases MHET hydrolases
ML Machine Learning
MMGBSA Molecular Mechanics Generalized Born Surface Area
MMPBSA Molecular Mechanics Poisson–Boltzmann Surface Area
MMRT Macromolecular Rate Theory
MMseq2 Many-against-Many sequence searching
nanoDSF nano-Differential Scanning Fluorimetry
NLP Natural Language Processing
NNs Neural Networks
PAZy Plastics-Active enZYmes
PB Poisson–Boltzmann
PCR Polymerase Chain Reaction
PDB Protein Data Bank
PET Polyethylene terephthalate
PETases PET hydrolases
PLMs Protein Language Models
RL Reinforcement Learning
SSM Site Saturation Mutagenesis
WT Wild-type
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