
Vol.:(0123456789)1 3

Current Osteoporosis Reports (2023) 21:485–492 
https://doi.org/10.1007/s11914-023-00808-4

Runt‑related Transcription Factors and Gene Regulatory Mechanisms 
in Skeletal Development and Diseases

Hironori Hojo1,2   · Shinsuke Ohba3

Accepted: 26 June 2023 / Published online: 12 July 2023 
© The Author(s) 2023

Abstract
Purpose of Review  Runt-related transcription factors (RUNX) play critical roles in skeletal development, metabolism, and 
diseases. In mammals, three RUNX members, namely RUNX1, RUNX2, and RUNX3, play distinct and redundant roles, 
although RUNX2 is a dominant factor in skeletal development and several skeletal diseases. This review is to provide an 
overview of the current understanding of RUNX-mediated transcriptional regulation in different skeletal cell types.
Recent Findings  Advances in chromatin immunoprecipitation and next-generation sequencing (ChIP-seq) have revealed 
genome-wide RUNX-mediated gene regulatory mechanisms, including their association with cis-regulatory elements and 
putative target genes. Further studies with genome-wide analysis and biochemical assays have shed light on RUNX-mediated 
pioneering action and involvements of RUNX2 in lipid–lipid phase separation.
Summary  Emerging multi-layered mechanisms of RUNX-mediated gene regulations help us better understanding of skel-
etal development and diseases, which also provides clues to think how genome-wide studies can help develop therapeutic 
strategies for skeletal diseases.
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Introduction

The runt-related transcription factor (RUNX) was first iden-
tified as an essential regulator of early embryonic segmenta-
tion in Drosophila [1]. RUNX genes are conserved in most 
metazoan genomes such as those of insects and vertebrates. 
In mammals, there are three RUNX transcription factors 
(TFs), namely RUNX1, RUNX2, and RUNX3 [2]. RUNX 

members are expressed in distinct cell types and play piv-
otal roles in multiple biological processes, such as skeletal 
development, metabolism, and diseases (see reviews [2–4] 
for details). Briefly, Runx2 is essential for osteoblast speci-
fication and chondrocyte hypertrophy. During osteogenesis, 
skeletal progenitors initially commit to forming RUNX2-
positive osteoblast precursors, which then differentiate into 
RUNX2- and SP7-double-positive osteoblast precursors [5]. 
Sp7 is another master regulator of osteoblast specification; 
Sp7 is genetically downstream of Runx2 [6]. In Runx2-defi-
cient mice, osteoblast differentiation was arrested and no 
Sp7 was detected [6]. In chondrogenesis, Runx2 is weakly 
expressed in proliferating columnar chondrocytes but is 
markedly upregulated as chondrocytes exit the cell cycle 
and become pre-hypertrophic and subsequently hypertrophic 
chondrocytes. The ectopic expression of Runx2 in columnar 
chondrocytes accelerates chondrocyte hypertrophy [7–9] and 
the knockout of Runx2 prevents normal hypertrophic carti-
lage mineralization [10].

Runx1 and Runx3 expression partially overlaps with 
Runx2 expression; these have redundant and distinct roles 
in association with RUNX2 in skeletal cells. In osteogen-
esis, RUNX1 and RUNX3 positively regulate osteoblast 
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proliferation and differentiation, and RUNX1 functions as a 
compensatory factor for RUNX2 [11, 12]. During chondro-
genesis, Runx1 is expressed in mesenchymal cells and pro-
liferating chondrocytes, whereas Runx3 is highly expressed 
in hypertrophic chondrocytes. The complete knockout of 
both Runx1 and Runx2 results in sternal abnormalities [13], 
whereas the double knockout of Runx2 and Runx3 results in 
a complete loss of cartilage and bone mineralization [10].

The crucial roles of Runx2 and redundant or distinct 
roles of Runx1 and Runx3 are also highlighted in skeletal 
metabolisms and diseases in adult stages. Bone mineral den-
sity decreases upon Runx2 deficiency in adult stages [12], 
whereas compared with Runx2-deficiency in adult skeletons 
in mice, Runx1- or Runx3-deficiency results in milder pheno-
types [11, 14]. RUNX1 and RUNX2 are also involved in the 
formation of a niche and the maintenance of hematopoietic 
stem cells in bone marrows [15]. During osteoarthritis (OA) 
progression, RUNX1 and RUNX3 mainly exhibit protec-
tive functions, whereas RUNX2 exhibits both anabolic and 
catabolic functions [16–19]. In this review, we provide an 
overview of the current understanding of gene regulatory 
mechanisms and emerging RUNX-mediated transcriptional 
regulation in skeletal cell types and their states. We then 
discuss future perspectives on how to apply knowledge from 
genome-wide studies to the development of therapeutic strat-
egies for skeletal diseases.

Gene Regulatory Mechanisms

Transcription is a key process where genes are transcribed 
into proteins that exhibit their biological functions. Tran-
script profiles are distinct depending on the cell type and 
physiological and pathological conditions. Transcrip-
tion is tightly regulated by enhancers, cis-regulatory ele-
ments (CREs), where multiple transcriptional regulators 
coordinately act [20, 21]. To understand gene regulatory 
mechanisms at the genomic level, chromatin immunopre-
cipitation and next-generation sequencing (ChIP-seq) and 
related assays have been developed over the past two dec-
ades [22]. ChIP-seq for a TF provides TF–DNA-binding 
profiles and the mode of action of TFs on the genome 
(Fig. 1a). ChIP-seq for histone modifications provides 
a broad range of epigenetic perspectives. For example, 
trimethylation at the 4th lysine residue of the histone H3 
protein (H3K4me3) represents an active promoter, and the 
acetylation of the lysine residue at the N-terminal position 
27 of the histone H3 protein (H3K27ac) indicates an active 
enhancer. Overall, these provide a theory called “histone 
code”: the combination of histone modifications defines 
an epigenetic status in cells [23]. In addition, an assay 
for transposase-accessible chromatin using sequencing 
(ATAC-seq) shows “chromatin accessible” regions for 
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Fig. 1   Overview of ChIP-seq and ATAC-seq experiments. a In ChIP-
seq experiments, chromatin DNA is first cross-linked with formalde-
hyde, followed by DNA shearing using either sonicator or enzymes 
to obtain DNA fragments of 100 to 600 bp. Then, the DNA-protein 
complex is immunoprecipitated by the specific antibody for a pro-
tein of interest. After protein digestions, purified DNA fragments are 
amplified for NGS analysis. The output data are sequences of regions 

that were interacted with the protein of interest. b In ATAC-seq, chro-
matin DNA is directly reacted with Tn5 transposase which associates 
with open chromatin regions. Tn5 transposase then cut open chro-
matin regions with tagging specific nucleotide sequences which are 
used for DNA amplification for NGS. The output data are sequences 
of Tn5 accessible regions, i.e., open chromatin regions, in the genome
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transcriptional regulator binding [24] (Fig. 1b). Chroma-
tin accessibility is strongly associated with cis-regulatory 
actions [25]. Given the requirement of a small number of 
cells, this technique has been widely used with a limited 
number of cells, such as sorted cells.

RUNX ChIP‑Seq Analysis in Osteogenesis

ChIP-seq studies on RUNX2 and histone modifications 
during osteogenesis were first reported by three independ-
ent groups in 2014. Several studies have provided insights 
into RUNX2-mediated gene regulation at the genomic 
level in osteoblasts. First, these studies identified putative 
CREs in osteoblasts [26–28]. CREs are located not only in 
the flanking regions of transcription start sites (TSSs) but 
also > 500 bp away from the TSS. These results indicate 
that RUNX2–DNA interactions occur at distal enhancer 
and proximal promoter regions [28, 29]. Meyer et al. further 
highlighted the importance of distal enhancers by analyz-
ing Mmp13 CREs. The distal Mmp13 enhancer was strongly 
responsive to RUNX2 expression according to the reporter 
assay, Mmp13 expression was markedly suppressed by the 
deletion of the distal enhancer using CRISPR/Cas9 technol-
ogy in vitro [29].

The examination of RUNX2-binding sites at various 
stages of osteoblast differentiation revealed dynamic changes 
in the RUNX2-DNA-binding sites. Wu et al. performed a 
clustering analysis of RUNX2 binding in conjunction with 
transcript profiles at various time points in an in vitro differ-
entiation culture of the pre-osteoblastic MC3T3-E1 cell line 
[27]. The results showed that a subset of RUNX2 ChIP-seq 
peaks was highly associated with osteoblast-related genes 
that were activated upon osteoblast induction [27]. Another 
cluster of RUNX2 peaks, which was lost upon osteoblast 
induction, was related to biological functions in other cell 
lineages, including fat cell differentiation, leukocyte migra-
tion, and erythrocyte differentiation [27]. These findings 
suggest that RUNX2 may have broader interactions prior to 
osteogenesis or that binding to non-osteoblast targets may 
suppress non-osteogenic pathways of cell commitment [27]. 
A recent RUNX2 ChIP-seq study supported this negative 
action; RUNX2 and early growth response protein 1 coop-
eratively inhibited the expression of HtrA serine peptidase 
1 (Htra1) by binding to its distal enhancers [30].

RUNX ChIP‑Seq Analysis in Chondrogenesis

The ChIP-seq of RUNX1, RUNX2, and RUNX3 has been 
performed in chondrocytes in vitro [16, 19]. Although, as 
described earlier, the roles of RUNX members differed in 
anabolic and catabolic functions in OA models [16–19], 
overall motif enrichment and the proportion of the ChIP-seq 
peak distance from the TSS were similar among the RUNX 

members. The RUNX consensus motif was highly enriched 
and more than half of the DNA-binding regions were far 
from the TSS. However, the putative RUNX target genes 
differed among the RUNX members. Zhou et al. performed 
RUNX1 ChIP-seq using chondrocytes. The assay revealed 
that RUNX1 was highly associated with genes related to the 
Hippo signaling pathway and skeletal system development 
[19]. They identified RUNX1 target genes, including trans-
membrane anterior posterior transformation 1 (TAPT1), pro-
tein RIC1 homolog (RIC1), and fibroblast growth factor 20 
(FGF20). The expression of these genes was downregulated 
in an osteoarthritic mouse model, whereas their expression 
was rescued by RUNX1 overexpression, in conjunction with 
protection against cartilage destruction [19].

Nagata et al. performed RUNX3 ChIP-seq on primary 
cells isolated from the superficial zone of the mouse articu-
lar cartilage [16•]. The assay showed that RUNX3 was 
highly associated with genes related to extracellular struc-
ture organization and collagen fibril organization. Further 
analysis using reporter assays and histological analysis in 
Runx3-deficient mice showed that RUNX3 directly regulated 
aggrecan (Acan) and proteoglycan 4 (Prg4). Prg4 functions 
as a boundary lubricant in the articular cartilage to decrease 
wear and friction. Acan is another anabolic factor in the car-
tilage. Thus, RUNX3 likely exhibits anabolic functions by 
regulating Prg4 and Acan during cartilage metabolism.

 Nagata et al. performed RUNX2 ChIP-seq using primary 
chondrocytes in vitro [16•]. Here, the cells were treated with 
interleukin (IL)-1β to establish a model of inflammation. 
The analysis showed that RUNX2 was highly associated 
with genes related to collagen fibril organization in the cells 
regardless of IL-1β treatments. Further gene expression 
analyses in Runx2-deficient chondrocytes treated with IL-1β 
revealed that the expression of Col2a1, a cartilage anabolic 
factor, was downregulated in Runx2-deficient cells treated 
with IL-1β, whereas it did not significantly change between 
the control and Runx2-deficient cells without IL-1β treat-
ment. Motif analysis and reporter assays further showed that 
SRY-box transcription factor 9 (SOX9), a chondrocyte mas-
ter regulator, compensated for RUNX2 during Col2a1 tran-
scription. However, upon inflammation, SOX9 expression 
decreased, resulting in a decrease in anabolic factors includ-
ing Col2a1. On the other hand, Mmp13, a catabolic factor, 
was downregulated because of Runx2 deficiency regardless 
of IL-1β treatment. These data suggest that RUNX2 acts 
as an anabolic and catabolic factor in different conditions, 
where Sox9 possibly compensates for RUNX2-mediated 
regulatory networks during the progression of OA. Notably, 
in the RUNX1 ChIP-seq analysis, the authors focused on 
RUNX1–DNA binding from the < 3 kb proximal promoter, 
whereas in RUNX2 and RUNX3 ChIP-seq studies, the 
authors investigated DNA binding from the > 500 bp distal 
enhancer far from the TSS. Thus, a comprehensive analysis 
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in the same setting will help better understand detailed gene 
regulatory mechanisms underlying the different biological 
outcomes of the effects of the three RUNX members.

Comparative Analysis of RUNX2 ChIP‑Seq 
in Osteoblasts and Chondrocytes (Fig. 2a)

We recently reported a RUNX2 ChIP-seq study on primary 
osteoblasts and chondrocytes coupled with the ATAC-seq 
analysis of sorted skeletal cells in neonatal mice, providing 
insights into RUNX2-mediated regulatory mechanisms in 
a near in vivo setting [31••]. Because RUNX2 is essential 
for both osteoblast specification and chondrocyte hypertro-
phy, we aimed to understand cell-type-specific mechanisms. 
First, RUNX2 expression was highly associated with dis-
tinct CREs in osteoblasts and chondrocytes. For example, 
RUNX2 binding to the osteoblast-specific CRE was detected 
in the Col1a2-flanking region in osteoblasts but not in chon-
drocytes. RUNX2 binding to CREs in the Col10a1-flanking 
region was detected in chondrocytes but not in osteoblasts. 
Consistent with these results, chromatin accessibility showed 
distinct cell-type signatures. Overall, cell-type-distinct 
RUNX2-DNA binding highlighted distinct cell-type target 
genes. Osteoblast-specific RUNX2 targets included Col1a1, 
Col1a2, Ostn, Fgf18, Dlx5, and Mef2c, whereas chondro-
cyte-specific targets included Col2a1, Col10a1, Bmpr1b, 
Sox5, and Creb3l2. Common target genes are also present 
in osteoblasts and chondrocytes. Notably, even for common 
target genes, such as Spp1, the distribution of RUNX2–DNA 
binding and chromatin accessibility around the genes was 
different between osteoblasts and chondrocytes [32]. These 
results suggest that RUNX2-mediated CRE activities are 

more diverse and cell-type-specific than the outcome of 
RUNX2 association, that is, gene expression.

RUNX2 and cell-type-specific TFs are associated with 
CREs in osteoblasts and chondrocytes. FOX motifs were 
exclusively enriched in RUNX2-bound regions in hyper-
trophic chondrocytes. Gene expression analysis showed the 
high expression of related TFs, including Foxa2, Foxa3, and 
Foxc1, supporting their indispensable roles in hypertrophic 
chondrocytes [33–36]. In the case of osteoblast regions, the 
SP7–DLX motif [37] was specifically enriched in osteo-
blasts. Sp7, Dlx3, Dlx5, and Dlx6 were highly expressed in 
the cells, supporting essential roles in osteogenesis [6, 38]. 
In addition to specific TFs, activator protein 1 (AP-1) and 
activating transcription factor (ATF) motifs were enriched 
in both cell types. This suggests that AP-1 and ATF are 
required in both cell types [39–43]. Because this type of 
assay relies on the DNA-binding actions of TFs, DNA-bind-
ing-independent actions, such as protein–protein interactions 
and post-translational modifications, are not detected. Thus, 
further proteomic analysis will help identify the entire com-
plex of the transcriptional machinery.

Pioneering Actions of RUNX Members Coordinating 
Chromatin Accessibility (Fig. 2b)

Recently, a model of “pioneer factors” has been proposed; 
“pioneer factors” are supposed to facilitate the opening of 
closed chromatin sites [44]. In this model, they bind to inac-
cessible genomic regions and recruit other TFs, cofactors, 
and chromatin modifiers to make the chromatin “accessible” 
to initiate transcription. Several lines of evidence support 
the notion that RUNX2 plays a pioneering role in osteo-
blast specification [31••]. First, the exogenous expression 
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Fig. 2   Emerging RUNX-mediated gene regulatory mechanisms. a 
Different CREs are used for RUNX binding in a cell-type- or cell-
state-dependent manner. The binding regions were also not the same 
among RUNX factors. These variations may explain the distinct 
biological outcomes. b RUNX factors are likely to have pioneering 
functions. RUNX binds to closed chromatin regions and opens the 
chromatin for later activation. Chromatin modifiers physically interact 

with RUNX and are likely involved in its pioneering action. c RUNX 
is involved in liquid–liquid phase separation. Interactions between 
the IDRs in the N-terminus of RUNX2 and cofactors are crucial for 
its formation. However, whether RUNX1 and RUNX3 exert similar 
effects on gene regulation remains unclear. RUNX, runt-related tran-
scription factors; CRE, cis-regulatory element; TF, transcription fac-
tor; IDR, intrinsically disordered regions
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of Runx2 in fibroblasts led to its DNA binding in closed 
chromatin regions, where chromatin accessibility was gained 
later [31••]. The high enrichment of the consensus RUNX 
motif in the altered genomic regions supports the idea 
that RUNX2 is directly associated with previously closed 
genomic sites. Second, a genetic study on mice revealed 
abundant changes in chromatin accessibility due to Runx2 
ablation in Sp7-positive osteoblast precursors [31••]. The 
“Runx2-dependent” regions were distal from the TSS, 
enriched with the consensus RUNX motif, and highly asso-
ciated with genes related to skeletal system development 
[31••]. These results suggest that RUNX2 is required for 
chromatin accessibility in osteoblasts, which may under-
lie RUNX2-mediated regulatory mechanisms in osteoblast 
specification. A recent study showed that the ten-eleven 
translocation (TET) family of dioxygenases physically inter-
acted with RUNX2; TET-mediated demethylation increased 
the chromatin accessibility of target genes by RUNX2 and 
facilitated RUNX2-regulated transcription [45•]. Thus, a 
transcriptional complex comprising RUNX2 and chromatin 
modifiers may facilitate chromatin accessibility.

Consistent with RUNX2, RUNX1 and RUNX3 have been 
suggested to act as pioneer factors in different cell types 
[2, 46]. RUNX1 has been shown to shape the chromatin 
landscape in metanephric mesenchymal and hematopoietic 
cells [47, 48]. RUNX3 plays a pioneering role in cell-cycle 
progression. The runt domain of RUNX3 physically inter-
acts with the bromodomain of BRD2, which interacts with 
the MLL1/MLL5 and SWI/SNF protein complexes to pro-
mote chromatin opening [49]. Further structural analysis of 
RUNX with chromatin modifiers will help understand how 
RUNX factors are associated with chromatin accessibility 
and how different RUNX factors act on the chromatin.

Liquid‑Liquid Phase Separation (Fig. 2c)

Phase separation is the basis for the formation of membrane-
less organelles in cells and is involved in many biological 
processes. Recent studies have indicated that the assembly 
of transcription machinery at genomic sites occurs via liq-
uid–liquid phase separation, leading to the formation of tran-
scriptional condensates [50, 51]. At these sites, the clusters 
of enhancers are bound by master TFs with high densities 
of coactivators, forming super-enhancers [52]. Indeed, the 
intrinsically disordered regions (IDRs) in the N-terminus of 
RUNX2 have been reportedly involved in phase separation. 
Mutations in alanine repeat expansions in the RUNX2 IDR 
alter its phase separation capacity and transcriptional activ-
ity, which are involved in cleidocranial dysplasia [53••].

However, the involvement of other RUNX members 
in phase separation remains to be clarified. RUNX2 IDR 
sequences are not well-conserved compared with those of 
RUNX1 or RUNX3, suggesting that phase separation may 

occur only with RUNX2. However, a recent study showed 
that the RUNX2 repression domain at the C-terminus is 
required for phase separation in cardiomyocytes, where 
RUNX2 interacted with arachidonate 5-lipoxygenase [54]. 
This repression domain is partially conserved among the 
RUNX factors. Therefore, different RUNX domains may be 
required for phase separation with different partners.

Conclusion

Genome-wide studies have provided valuable insights into 
diverse aspects of gene regulation, including DNA-binding 
regions, histone modification, chromatin accessibility, and 
lipid–lipid phase separation. RUNX plays a critical role in 
controlling gene regulatory networks via diverse mecha-
nisms. The fields that still require further exploration are as 
follows: (1) the development of therapeutic strategies based 
on insights gained from genome-wide analyses and (2) a 
deeper understanding of the human genetic variants that 
contribute to diseases.

First, as described earlier, cis-regulatory actions are 
dynamic and cell-state-specific. Gene regulatory mecha-
nisms underlying pathological conditions and tissue regener-
ation should be investigated. It is worth identifying disease-
specific gene regulatory networks and manipulating them 
for treatment and disease diagnosis. CRISPR technology for 
epigenomic editing may be helpful [55]. Interestingly, a tis-
sue repair–specific enhancer was identified in a fish study 
[56]; another study used this enhancer for gene delivery sys-
tems in mammals [57]. Similarly, skeletal disease–specific 
enhancers could be used as delivery systems for treatment 
in the future.

Second, from a human genetics perspective, extensive 
genome-wide association studies (GWAS) have identified 
associations between the human genome, skeletal develop-
ment, and diseases [58, 59]. Notably, more than 90% of the 
genetic loci associated with diseases have been identified 
outside protein-coding regions, with enhancers account-
ing for approximately 40% of the non-coding regions [60]. 
Recent integrative analyses of GWAS have identified the 
effector genes of GWAS loci in osteoporosis and related 
skeletal diseases [58, 61, 62]. Thus, accumulating knowledge 
on gene regulatory mechanisms will provide a rich resource 
for connecting regulatory variants to human diseases. To 
bridge the gap between regulatory variants and diseases, we 
recently reported CRE profiling in human skeletal devel-
opment using human pluripotent stem cells [63]. Although 
crucial CREs are conserved among species, human-specific 
single-nucleotide polymorphisms may also be involved in 
these diseases. Further studies on human CREs will help 
understand human variants underlying the molecular mecha-
nisms of pathogenic conditions.
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